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Abstract. This paper presents an analysis of methane emissions from the Los Angeles basin at 1	  

monthly timescales across a four-year time period – from September 2011 to August 2015. 2	  

Using observations acquired by a ground-based near-infrared remote sensing instrument on 3	  

Mount Wilson, California combined with atmospheric CH4-CO2 tracer-tracer correlations, we 4	  

observed -18% to +22% monthly variability in CH4:CO2 from the annual mean in the Los 5	  

Angeles basin. Top-down estimates of methane emissions for the basin also exhibit significant 6	  

monthly variability (-19% to +31% from annual mean and a maximum month-to-month change 7	  

of 47%). During this period, methane emissions consistently peaked in the late summer/early fall 8	  

and winter. The estimated annual methane emissions did not show a statistically significant trend 9	  

over the 2011 to 2015 time period.  10	  

  11	  
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1 Introduction 1	  

Methane (CH4) is a potent and newly regulated greenhouse gas in California. However, its 2	  

emissions are poorly understood. In the South Coast Air Basin, which holds more than 43% of 3	  

state’s population, the annual methane emissions estimates based on atmospheric CH4 4	  

observations indicate that the bottom-up emission inventory was systematically underestimated 5	  

by 30% to >100% (Wong et al., 2015; Jeong et al., 2013; Peischl et al., 2013; Wennberg et al., 6	  

2012; Wunch et al., 2009; Wecht et al., 2014; Cui et al., 2015). Methane sources in the basin can 7	  

be classified into two categories – biogenic and thermogenic. Biogenic methane is emitted from 8	  

anaerobic digestion of organic matter by bacteria in waste management facilities, and by cattle in 9	  

dairy farms. Waste management facilities include landfills, wastewater treatment plants and 10	  

manure management facilities in dairy farms. Thermogenic methane emissions include natural 11	  

sources, such as seeps and tar pits, and anthropogenic sources such as natural gas system leakage 12	  

and gas/oil fields. Emissions from these sources are likely to have different seasonal patterns. 13	  

Quantifying and tracking the seasonal variability will help us understand methane emissions and 14	  

are essential for verifying emissions regulation and mitigation policies. However, most studies to 15	  

date have been based on data from short-term measurement campaigns and have provided 16	  

limited information on the temporal variability or trends of methane emissions in the basin 17	  

(Peischl et al., 2013; Wecht et al., 2014; Cui et al., 2015; Wunch et al., 2009).   18	  

One commonly used approach to estimate CH4 emissions from atmospheric observations is the 19	  

tracer-tracer correlation technique. This method uses the regression slopes between observed 20	  

trace gas mixing ratios (e.g. CH4:CO2 or CH4:CO) in the atmosphere to calculate CH4 emissions 21	  

based on the more accurately known emissions of the correlate (e.g. CO2 or CO). This method 22	  

permits the derivation of the relative emissions of the two trace gases without the use of transport 23	  

models and does not require the sources to be co-located (Wong et al., 2015; Peischl et al., 2013; 24	  

Wennberg et al., 2012; Hsu et al., 2010; Wunch et al., 2009). Based on in situ flask observations 25	  

on Mount Wilson, Hsu et al. (2010) did not observe any seasonal variability in the CH4:CO ratio 26	  

from April 2007 to February 2008. Using column observations from the Total Carbon Column 27	  

Observing Network (TCCON) in Pasadena, Wennberg et al. (2012) observed a ±15% monthly 28	  

variability in the CH4:CO ratio between August 2007 to June 2008, but the monthly variability in 29	  

methane emissions was not reported.  30	  
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This paper presents the first study to quantify total methane emissions from an urban region at 1	  

the monthly intervals and for an extended period of four years – from September 2011 to August 2	  

2015. Using a unique dataset of mountaintop remote sensing observations acquired with the 3	  

California Laboratory of Atmospheric Remote Sensing Fourier transform spectrometer (CLARS-4	  

FTS) (Wong et al., 2015; Fu et al., 2014), we have constructed a series of monthly CH4:CO2 5	  

tracer-tracer correlations to, address the following questions:  6	  

1. What is the monthly variability in methane emissions in the Los Angeles basin? 7	  

2. Is there a detectable year-to-year methane emissions change in the basin?     8	  

3. What methane source(s) is(are) responsible for any observed temporal trends? 9	  

 10	  

2  Methods 11	  

Since September 2011, continuous daytime ground-based remote sensing measurements of CH4 12	  

and CO2 have been acquired by a JPL-built Fourier transform spectrometer on Mount Wilson 13	  

(Wong et al., 2015; Fu et al., 2014). The California Laboratory of Atmospheric Remote Sensing 14	  

(CLARS) is located at an altitude of 1670 m above sea level with a panorama of the Los Angeles 15	  

basin (Fig. 1). CLARS-FTS quantifies atmospheric column CH4 and CO2 using reflected sunlight 16	  

in the near-infrared region. It operates in two measurement modes: Spectralon Viewing 17	  

Observations (SVO) and Los Angeles Basin Surveys (LABS). In the SVO mode, the instrument 18	  

quantifies the background tropospheric column CH4 and CO2 above the Los Angeles basin by 19	  

measuring reflectance from a Spectralon® plate located at the CLARS site. In the LABS mode, 20	  

the instrument samples the basin slant column CH4 and CO2 by measuring the surface reflection 21	  

from 28 geographical locations (or reflection points) in the basin (Fig. 1). In each measurement 22	  

cycle, we collect one set of LABS measurements and four SVO measurements. There are 5 to 8 23	  

measurement cycles per day, depending on the time of the year.  24	  

Based on the Beer-Lambert Law, the slant column density (SCD) – the total number of absorbing 25	  

molecule per unit area along the sun-Earth-instrument optical path – is retrieved for CH4
 at 1.67 26	  

µm, CO2 at 1.60 µm, and O2 at 1.27 µm using a modified version of the GFIT algorithm 27	  

developed at JPL (Fu et al., 2014; Wunch et al., 2011). The retrieved SCDs of CH4 and CO2 are 28	  

then converted to slant column-averaged dry air mixing ratio, XCH4 and XCO2, by normalizing 29	  
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to the retrieved SCD of O2 (SCDO2) (Eq. 1).  1	  

XGHG = !"#  !"!
!"#  !!

    ×  0.2095                                                                                                          (1) 2	  

Individual retrievals are analyzed with multiple post-processing filters to ensure data quality. 3	  

Spectra are removed when the residual root mean square errors of the fits to the GFIT radiative 4	  

transfer model exceed a pre-defined threshold. These are usually associated with aerosols, high 5	  

and low clouds, electrical or mechanical noise, and other transient behavior. Details about the 6	  

CLARS-FTS design, data retrieval algorithm and data filtering process are described in Fu et al. 7	  

(2014) and Wong et al. (2015).  8	  

Wong et al. (2015) mapped the spatial distribution of the CH4:CO2 ratio and derived an annual 9	  

total CH4 emission for the basin, based on CLARS-FTS observations from 2011 to 2013. Here 10	  

we used the same approach but focused on the temporal trend and quantify the monthly total CH4 11	  

emissions for the basin. Therefore, following Wong et al. (2015), we calculated the excess XCH4 12	  

and XCO2, due to the emissions from the basin, by subtracting the corresponding SVO 13	  

measurements from the LABS observations (Eq. 2).  14	  

XGHG!" =   XGHG!"#$ −   XGHG!"#                                                                                             (2)    15	  

We then performed orthogonal distance regression (ODR) analyses of XCH4(XS) and XCO2(XS) for 16	  

the 28 reflection points for each month starting from September 2011 to August 2015. To 17	  

explore the overall monthly variability during this period, we calculated the weighted average 18	  

regression slope among the 28 reflection points, R, using Eq. (3). In Eq. (3), r! stands for the 19	  

regression slope for reflection point i, w! is the weight which is defined as the reciprocal of the 20	  

square of the one sigma uncertainty of the regression slope, σ!.  21	  

R|!"#$%&'!"#$% =      !!!!  !!!"
!!!

!!
!!!"
!!!

  , where w! =
!
!!
!                                                                                        (3) 22	  

 23	  

3  Results 24	  
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In this section, we describe the monthly and multi-year trends of the basin average regression 1	  

slope observed by CLARS-FTS. Figure 2 shows the time series of the Los Angeles basin 2	  

weighted average monthly XCH4(XS)/XCO2(XS) regression slopes, R, and their uncertainties 3	  

observed by the CLARS-FTS from September 2011 to May 2015. During this period, R ranged 4	  

from 5.4 to 7.7 ppb CH4 (ppm CO2)-1 with an overall mean of 6.5 ppb CH4 (ppm CO2)-1. This is 5	  

consistent with previous atmospheric observations: 7.8±0.8 ppb ppm-1 from TCCON in 2007-6	  

2008, 6.7±0.6 ppb ppm-1 from ARCTAS in 2008, and 6.7±0.0 ppb ppm-1 from CalNex in 2010 7	  

(Wunch et al., 2009; Wennberg et al., 2012; Peischl et al., 2013). CLARS-FTS observations 8	  

showed significant monthly fluctuations. The monthly variability in the slope was -8% to +5% in 9	  

2011, -9% to +22% in 2012, -13% to +11% in 2013, -18% to +11% in 2014 and -8% to +11% in 10	  

2015. Monthly variability reported here spans the minimum and maximum deviations from the 11	  

annual monthly mean for each year. Monthly variability for 2011 and 2015 was calculated based 12	  

on partial annual data (that is, from September to December for 2011 and from January to 13	  

August for 2015). In general, we observed peaks in late summer, fall and winter: R exceeded 7 14	  

ppb CH4 (ppm CO2)-1 in August 2012, December 2012, November 2013, August 2014, 15	  

September 2014, November 2014 and August 2015. The smallest values of R were observed in 16	  

the spring and early summer. Typically, R dipped below 6 ppb CH4 (ppm CO2)-1 in May-June, 17	  

2012, June 2013, and March 2013.  18	  

Figure 3 compares the year-to-year monthly values of R to the four-year mean values. The 19	  

weighted four-year mean values showed maxima in August and September, at 7.0 ppb CH4 (ppm 20	  

CO2)-1. Minima occurred in March when the weighted monthly mean was 5.8 ppb CH4 (ppm 21	  

CO2)-1. The fall peak was also observed by TCCON observations in Pasadena from 2007 to 2008 22	  

(Wennberg et al., 2012). However, no winter peak was observed in their study. CLARS 23	  

observations showed multi-year variability for some months but not others. To better understand 24	  

the seasonal year-to-year trends in R, we plotted the yearly trends for fall (September, October 25	  

and November), winter (December, January and February), spring (March, April and May) and 26	  

summer (June, July and August) in Fig. 4. A 15% increase in R over Los Angeles was observed 27	  

in the fall season over the last few years. R increased from 6.2 ppb CH4 (ppm CO2)-1 in 2012 to 28	  

7.1 ppb CH4 (ppm CO2)-1 in 2014. This increasing trend was also observed in summer from 2012 29	  

to 2014. However, the summer value decreased again from 2014 to 2015. No year-to-year 30	  
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change was observed in spring. In winter, there were some year-to-year changes but no obvious 1	  

increasing or decreasing trend over the study period. The annual average R value showed no 2	  

significant trend and less than 4% year-to-year variability between 2011 and 2015.  3	  

For comparison, we also calculated the CH4:CO2 emission ratio based on the bottom-up emission 4	  

inventory. California Air Resources Board (CARB) reported statewide total emissions of CH4 5	  

and CO2 through 2013 (http://www.arb.ca.gov/app/ghg/2000_2013/ghg_sector.php). For CO2, 6	  

statewide emissions were 384, 389 and 387 Tg CO2 per year in 2011, 2012, and 2013 7	  

respectively. Following Wong et al. (2015), we downscaled the statewide CO2 emissions by 8	  

fractional population (43% of state population) to obtain 165, 167 and 166 Tg CO2 per year in 9	  

2011, 2012 and 2013, respectively, for emissions from the South Coast Air Basin. For CH4, 10	  

bottom-up emissions of 1629, 1636 and 1644 Gg CH4 per year were reported by CARB in 2011, 11	  

2012 and 2013 respectively. Following the approach used by Wong et al. (2015), we estimated 12	  

the emissions from the South Coast Air Basin by subtracting the agriculture and forestry 13	  

emissions from the total emissions and then apportioning the emissions by population. This gave 14	  

us emissions of 301, 297 and 300 Gg CH4 per year in the South Coast Air Basin from 2011 to 15	  

2013. The bottom-up estimate of R, the CH4/CO2 emission ratio, was calculated from Eq. (4), 16	  

where E!"!|!""#!$
!"#$"%&'( is the downscaled CARB annual total CH4 emissions, E!"!|!""#!$

!"#$"%&'( is the 17	  

downscaled CARB annual total CO2 emissions and !"!"!
!"!"!

 is the ratio of the molecular weights 18	  

of CH4 and CO2 (that is !"  !  !"!/  !"#$
!!  !  !"!/  !"#$

).  19	  

R!""#!$
!"#$"%&'(   =    !!"!|!""#!$

!"#$"!"#$

!!"!|!""#!$
!"#$"%&'(       ×       

!"!"#
!"!"#

                                                               (4) 20	  

Using the downscaled CARB emission estimates for the South Coast Air Basin yields annual R 21	  

values of 5.0, 4.9 and 5.0 ppb CH4 (ppm CO2)-1 for 2011, 2012 and 2013, respectively. Figure 4 22	  

shows that the annual R values determined from CLARS observations are typically in the 6.3 – 23	  

6.7 range. Thus, the inventory-based R value systematically underestimated the observed annual 24	  

R values by ~30%.  25	  

 26	  
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 4 Discussion 1	  

We can rearrange Eq. (4) to estimate monthly CH4 emissions from the South Coast Air Basin 2	  

using the CH4/CO2 regression slope R determined from CLARS observations and an inventory-3	  

based estimate of monthly CO2 emissions (Wong et al., 2015). 4	  

E!"!|!"#$%&'
!"#!!"#$ = R|!"#$%&'!"#$%       ×      E!"!|!"#$%&'

!"#$"%&'(      ×       !"!"!
!"!"!

                                                        (5) 5	  

However, this requires estimates of the monthly CO2 emissions from the South Coast Air Basin. 6	  

4.1 Estimating Monthly CO2 emissions  7	  

This subsection explores the available CO2 emission database (E!"!|!"#$%&')  for the basin. 8	  

CARB reported annual bottom-up statewide CO2 emissions from 2011 to 2013. As described in 9	  

the results section, we estimated the annual emissions in the South Coast Air Basin by 10	  

apportioning the statewide emissions using the ratio of population in the South Coast Air Basin 11	  

to the state population. Because there is no monthly statewide emissions information available, 12	  

we distributed the annual CO2 emission evenly over twelve months (shown as solid light blue 13	  

line in Fig. 5). Data in 2014 and 2015 (shown as light blue line) are extrapolated using statewide 14	  

annual fuel consumption data provided by the Energy Information Administration 15	  

(http://www.eia.gov/dnav/ng/hist/n9140us2M.htm; 16	  

http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=A103450061&f=M ). 17	  

In addition to the official CARB emission inventory, three CO2 emission data products provide 18	  

monthly temporal resolution for the South Coast Air Basin for our observational period.  19	  

1. Hestia – The Hestia fossil fuel CO2 emissions data product provides sectoral bottom-up 20	  

emissions at the building and street level on hourly timescales (http://hestia.project.asu.edu). 21	  

Data are available for the South Coast Air Basin for the years 2011 and 2012. Here, we 22	  

calculated the monthly total CO2 emissions for the South Coast Air Basin domain based on 23	  

the Hestia 1.3 km x 1.3 km hourly gridded version 1.0 (shown by the solid black line in Fig. 24	  

5). We defined the South Coast Air Basin domain as the rectangular box bounded by 118.83° 25	  

W, 116.67° W, 33.38°N and 34.77°N. Because there are no data after 2012, we extrapolated 26	  
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the emissions from 2012 to 2015 (shown as a faded black line in Fig. 5) using the same 1	  

approach described above.   2	  

2. ODIAC – Open-source Data Inventory for Anthropogenic CO2 (ODIAC) provides global 3	  

emission fields of fossil fuel CO2 emission with 1 km × 1 km spatial sampling on a monthly 4	  

basis. ODIAC is based on CO2 emission estimates from the Carbon Dioxide Information and 5	  

Analysis Center (CDIAC), fuel consumption statistics published by British Petroleum, 6	  

satellite-observed nightlights and a global power plant database (Oda and Maksyutov, 2011). 7	  

The monthly CO2 emissions for the South Coast Air Basin domain from September 2011 to 8	  

December 2014 are shown as the solid red line in Fig. 5. Data in 2015 (shown as the faded 9	  

red line) are projected using the same approach used to extrapolate the Hestia emissions.   10	  

3. FFDAS - Fossil Fuel Data Assimilation System (FFDAS) provides global monthly/hourly 11	  

sectoral fossil fuel CO2 emission with 0.1° × 0.1° (approx. 10 km × 10 km) spatial sampling 12	  

(Asefi-Najafabady et al., 2014). This data product is derived from an optimization of the 13	  

Kaya identity constrained by national fossil fuel CO2 emissions from the International 14	  

Energy Agency, satellite-observed nightlights, population, and the Ventus power plant 15	  

dataset. Emissions are available through 2012 (shown as the solid green line). Data from 16	  

2013 and onwards (shown as the faded green line) are extrapolated using the same method 17	  

described previously for CARB, Hestia and ODIAC.   18	  

As shown in Fig. 5, there are differences as large as 3 Tg CO2 per month among the three 19	  

gridded datasets: Hestia, ODIAC and FFDAS. The differences result from 1) emission 20	  

calculation methods, 2) the underlying dataset used in the emission calculations and, 3) spatial 21	  

modeling. Hestia is derived primarily from local data in the South Coast Air Basin while ODIAC 22	  

and FFDAS are based primarily on national and global proxy approaches. It has been shown that 23	  

the use of a global dataset may underestimate emissions in Los Angeles by up to 18% (Brioude 24	  

et al., 2013). Despite the systematic differences, all three gridded emission datasets show very 25	  

similar monthly variability, with peaks in summer and winter. Based on the source 26	  

apportionment in Hestia, the summer peak is due to electricity usage (air conditioning) and the 27	  

winter peak is due to space heating. In all three datasets, fossil fuel CO2 emissions in the basin 28	  

show -9 to +14% monthly fluctuations about the annual mean. 29	  
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We believe the Hestia data product provide the most accurate CO2 emission estimates for the 1	  

South Coast Air Basin among all available databases. Therefore, we used the Hestia CO2 2	  

emissions in our calculations to estimate CH4 emissions.    3	  

4.2 Deriving top-down monthly CH4 emissions  4	  

This subsection explains the monthly and annual trends of our methane emission estimates.  5	  

Figure 6 shows the time series of monthly methane emissions computed from Eq. (5). Shaded 6	  

areas represent the 1σ uncertainties of the derived emissions. Uncertainties are propagated from 7	  

the uncertainties of CLARS-FTS XCH4(XS)/XCO2(XS) regression slopes and CO2 emissions. For 8	  

CO2 emissions, we assumed a 10% uncertainty in the Hestia monthly CO2 emissions (K. Gurney, 9	  

personal communication, 2016).  10	  

Derived methane emission estimates ranged from 23 to 39 Gg CH4 per month. Methane emission 11	  

peaks occurred in late summer/early fall and winter months. Distinct peaks of methane emission 12	  

occurred in December 2011, August 2012 and December 2012 when methane emissions 13	  

exceeded 33 Gg per month. In 2013 and 2014, the summer and fall peaks were less prominent 14	  

than in 2012. Minimum methane emissions occurred in late spring/early summer when emissions 15	  

dropped below 27 Gg per month. The monthly variability in methane emissions was -12 to +16% 16	  

in 2011, -13% to +31% in 2012, -19% to +14% in 2013, -16% to +17% in 2014 and -14% to 17	  

+17% in 2015. Monthly variability reported here is the minimum and maximum percent 18	  

difference from the annual average. Note that monthly variability in 2011 and 2015 was 19	  

calculated based on partial annual data.  20	  

Figure 7 plots the monthly patterns of CLARS-FTS inferred methane emissions for each year. 21	  

The inferred methane emission estimates showed a bimodal distribution with peaks during the 22	  

winter and the late summer/early fall. The weighted monthly average over this period showed 23	  

maxima in January, August and December at 31, 33 and 32 Gg CH4 per month. The weighted 24	  

monthly average gradually decreased from January to June when methane emission reached a 25	  

minimum of 25 Gg CH4 per month. No statistically significant interannual seasonal variability 26	  

was observed. 27	  
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4.3 Yearly trends in top-down CH4 emissions  1	  

Figure 8 shows the estimated CH4 annual emissions for the South Coast Air Basin from 2011 to 2	  

2015. The annual methane emission derived for the South Coast Air Basin was 345 Gg CH4 per 3	  

year in 2011. Derived emission increased to 356 Gg CH4 per year in 2013. Since then, there has 4	  

been a decreasing trend reaching 325 Gg CH4 per year in 2015. Due to the large uncertainty 5	  

propagated mainly from CO2 emissions, we derived a decreasing trend of -5 ± 4 Gg CH4 per year 6	  

with only 25% confidence level.  7	  

Figure 9 compares all reported CH4 annual total emission estimates for the South Coast Air 8	  

Basin in the past ten years. These estimates were derived based on in situ ground observations 9	  

(Hsu et al., 2010), column measurements (Wunch et al., 2009, Wennberg et al., 2012; Wong et 10	  

al., 2015) and aircraft measurements (Peischl et al., 2013; Wennberg et al., 2012; Wecht et al., 11	  

2014; Cui et al., 2015) in the Los Angeles basin. Among all the previous studies, only one study 12	  

(Wong et al., 2015) estimated methane emissions for the period between 2011 and 2015. Our 13	  

estimates for 2011 to 2013 were lower but within uncertainties with the estimates reported by 14	  

Wong et al. (2015). The difference in the estimated methane emissions between the present study 15	  

and Wong et al. (2015) is due to differences in the CO2 reference emissions used in the 16	  

calculations. Hestia CO2 emissions used in the present calculations were lower than the 17	  

population-scaled CARB emissions used in Wong et al., 2015. The rest of the studies were based 18	  

on methane observations from 2007 to 2010. Despite the different study periods, methane 19	  

emission estimates from our study are inconsistent with previous top-down estimates. About half 20	  

of previously reported methane emission estimates were focused on the CALNEX field 21	  

experiment in May and June 2010. The annual methane emission estimates from these studies 22	  

could be underestimated as we observed that methane emissions tend to be lowest during these 23	  

months. Comparing our results to the bottom-up inventory, the scaled CARB CH4 emissions 24	  

from 2011 to 2013 were 2-31% lower than our estimates.  25	  

4.4 Analysis assumptions  26	  

In this subsection, we discuss the analysis assumptions used to derive CH4 emissions for the 27	  

South Coast Air Basin using CLARS-FTS observations.  28	  
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• Spatial and temporal representation based on CLARS-FTS measurement technique. 1	  

We assumed that the CLARS-FTS measurement domain is representative of the South Coast 2	  

Air Basin. The CLARS-FTS measurement domain covers 67% of CO2 emissions in the 3	  

South Coast Air Basin spatial domain according to the Hestia CO2 data product. Therefore, 4	  

the CLARS-FTS observations are more representative of the sampled area in the South Coast 5	  

Air Basin than the entire basin. In addition, our methane emission estimates were based on 6	  

daytime-only observations.  7	  

• Spatial and temporal bias due to data filtering. CLARS-FTS samples the Los Angeles 8	  

basin using its standard measurement sequence. However, as described in Wong et al. 9	  

(2015), certain months of the year are more prone to cloud and aerosol interference in the 10	  

Los Angeles basin. This may introduce biases in the monthly sampling of post-filtered data. 11	  

To accurately estimate the LA basin value, we used the weighted average XCH4(XS)/XCO2(XS) 12	  

regression slope, as the statistical weight for each reflection point is based on the number of 13	  

samples passing through the data quality filters. We also performed a bootstrap analysis to 14	  

ensure that there is no sampling bias in the regression slopes (Efron and Tibshirani, 1993).  15	  

• Seasonal bias due to transport variability. Changes in meteorology patterns in summer vs. 16	  

winter can lead to a seasonal dependence on the observations’ footprint, which is the 17	  

sensitivity of the observations to changes in emissions. In the Los Angeles basin, the 18	  

prevailing winds are typically northwesterly and onshore throughout the year, except for 19	  

Santa Ana events (Conil and Hall, 2006). During Santa Ana events, which typically occur 20	  

during the period from October to March, the wind patterns in the basin shift to easterly and 21	  

offshore flow (Hughes and Hall, 2010). We investigated the impact of Santa Ana events on 22	  

our results using the Santa Ana Index to remove observations during Santa Ana events 23	  

(Hughes and Hall, 2010; Conil and Hall, 2006; http://meteora.ucsd.edu/weather/). A 24	  

correlation analysis showed that applying the Santa Ana Index filter did not cause any 25	  

statistically significant bias on the CLARS monthly CH4:CO2 ratios. This insensitivity is 26	  

likely due to the effect of spatial averaging over 28 slant column measurements that span a 27	  

50 x 100 km2 spatial domain in the Los Angeles basin, mitigating the effect of transport 28	  

variability, especially when compared with measurements from individual tower sites. A 29	  

more diagnostic approach involving the application of a high-resolution tracer transport 30	  
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model to investigate potential transport-induced biases on CLARS-FTS results will be 1	  

carried out in the future.   2	  

4.5 Exploring seasonal variability from major CH4 emission sources  3	  

Currently, no monthly methane emission database is publicly available for comparison with our 4	  

top-down estimates during our observational period. In this subsection of the paper, we review 5	  

previous studies of the seasonal emissions variability from major methane sources (landfills, 6	  

dairies, wastewater treatment plants and natural gas system leakage) to understand possible 7	  

contributions to the observed monthly variability in total CH4 emission in the South Coast Air 8	  

Basin.  9	  

• Landfills. Landfills are major emitters of CH4 in the basin. Previous studies suggested that 10	  

landfills could contribute 41-63% of total annual methane emissions (Peischl et al., 2013; 11	  

Wennberg et al., 2012; Hsu et al., 2010). The seasonal variability in landfill CH4 emissions is 12	  

poorly understood, however. Peischl et al. (2013) estimated the emissions from two of the 13	  

largest landfills in the basin – Olinda Alpha landfill and Puente Hills landfill – based on 14	  

aircraft measurements in May and June 2010. Based on observations taken from four flights 15	  

in May and one flight in June, their studies found that CH4 emissions from Olinda Alpha 16	  

landfill was almost double in June relative to May while Puente Hills landfill (which was 17	  

closed in 2012) showed less than 15% changes in monthly emissions in 2010. Using a 18	  

landfill model, Spokas et al. (2015) found that the statewide landfill emissions were largest in 19	  

October and smallest in April in 2010. Other observational studies found that CH4 emissions 20	  

from landfills peak in July and August (Shan et al., 2013; Spokas et al., 2011; Tratt et al., 21	  

2014; Goldsmith et al., 2012). These studies suggest that landfills can contribute to the late 22	  

summer/early fall peak in the total CH4 emissions observed by CLARS-FTS but are unlikely 23	  

to explain the winter peaks. 24	  

• Dairies.  Previous observations suggested that dairy farms could contribute 32 – 76 Gg CH4 25	  

per year in the South Coast Air Basin (Peischl et al., 2013; Wennberg et al., 2012). This 26	  

corresponds to 8% to 36% of the reported total annual CH4 emissions in the studies. In 27	  

general, studies on dairies focus on mitigation strategies rather than quantifying temporal 28	  

changes in emissions. Limited studies of dairy emissions report peaks in CH4 emissions in 29	  
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summer and early fall (from June to September), and steady minima in spring and winter 1	  

(VanderZaag et al., 2014; VanderZaag et al., 2013; VanderZaag et al., 2010; VanderZaag et 2	  

al., 2009; Ulyatt et al., 2002; Kaharabata et al., 1998). These findings imply that dairies can 3	  

also be contributing to the summer/early fall peaks in the CLARS-FTS inferred CH4 4	  

emissions.  5	  

• Wastewater treatment.  This sector is shown to be responsible for 33% of Los Angeles 6	  

County and 9.4% of the South Coast Air Basin (Hsu et al., 2010; Wennberg et al., 2012). 7	  

Daelman et al. (2012; 2013) measured CH4 emissions from a wastewater treatment facility 8	  

for one year (2010-2011) and reported up to 40% monthly fluctuations from the mean, with a 9	  

maximum in June.  10	  

• Fossil fuel sources.  Recent studies based on mobile, stationary and airborne measurements 11	  

of methane in Los Angeles indicated that fossil fuel sources contribute 47% to 90% of the 12	  

total CH4 emissions in the basin (Wennberg et al., 2012; Townsend-Small et al. 2012; Peischl 13	  

et al., 2013; Hopkins et al., 2015). Wennberg et al. (2012) and Peischl et al. (2013) suggested 14	  

that fugitive emission from natural gas distribution system leakage contributes to the gaps 15	  

between bottom-up and top-down total CH4 emissions in the South Coast Air Basin. McKain 16	  

et al. (2014) found little seasonal dependence (<10%) on the emissions from the natural gas 17	  

system in Boston, Massachusetts. Their studies showed a leakage rate of 2.7 ± 0.6% from the 18	  

natural gas system. Wennberg et al. (2012) reported a consistent leakage rate from the natural 19	  

gas system in Los Angeles and suggested that most of the leakages from such systems are 20	  

likely to occur in residential/commercial areas where the distribution system ends. Publicly 21	  

available natural gas consumption data from residential and commercial sectors in the South 22	  

Coast Air Basin show a significant seasonal cycle with a maximum in winter due to heating 23	  

(https://energydatarequest.socalgas.com/). Wennberg et al. (2012) and McKain et al. (2014) 24	  

observed that the leakage rate from the natural gas system is constant throughout the year and 25	  

suggested that the majority of leakage occurs in the distribution system to the residential and 26	  

commercial sectors. This conclusion is reasonable since the natural gas distribution pipeline 27	  

system is pressure-regulated at several points, and leakage should be independent of 28	  

consumption to first order. However, this is not the case for natural gas storage facilities 29	  

which are pressurized to higher levels in the summer and late fall in Southern California to 30	  

respond to increased demands for summertime electric power generation for air conditioning 31	  
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and wintertime space heating. In October, 2015, a massive leak began at an underground well 1	  

pipe at the Aliso Canyon (Los Angeles) natural gas storage facility as it was being 2	  

pressurized to provide wintertime reserves. While this leak was unprecedented in scale, it 3	  

raises the question whether smaller fugitive leaks in the storage infrastructure from this and 4	  

numerous other above- and below-ground reservoirs contribute to the seasonal variability 5	  

observed in CLARS-FTS data. The Aliso Canyon leak resulted in very large increases (as 6	  

much as a factor of 10) in the observed instantaneous values of XCH4(XS)/XCO2(XS) throughout 7	  

the entire CLARS-FTS field of regard (Wong et al., in prep.). Since CLARS-FTS is capable 8	  

of resolving CH4 enhancements that are significantly smaller than those caused by the Aliso 9	  

Canyon leak, perhaps seasonally-varying fugitive emissions from natural gas storage 10	  

facilities and associated infrastructure are partially responsible for the observed monthly 11	  

variability. Enhanced long-term monitoring for fugitive emissions will be required to test this 12	  

hypothesis.   13	  

 14	  

5 Summary and Conclusions  15	  

Using CLARS-FTS mountaintop remote sensing observations from Mount Wilson along with 16	  

tracer-tracer CH4:CO2 correlation analyses, we estimated the monthly variability in CH4:CO2 and 17	  

top-down CH4 emissions from the South Coast Air Basin from 2011-2015. Significant monthly 18	  

variability (-18% to +22%) in CH4:CO2 was observed. Double peaks in late summer/early fall 19	  

and winter occurred consistently during the study period. The fall peak in the CH4:CO2 ratios 20	  

was also observed by TCCON (Wennberg et al., 2012). The CLARS-FTS XCH4(XS)/XCO2(XS) 21	  

regression slopes showed -7% to 10% year-to-year seasonal variability, with an increasing trend 22	  

in the fall season from 2012 to 2014. The annual average XCH4(XS)/XCO2(XS) regression slopes 23	  

showed less than 4% year-to-year variability between 2011 and 2015.  24	  

Using the best available estimates of CO2 emissions, top-down estimates of CH4 emissions were 25	  

determined using the emission ratio method. Repeatable peaks in late summer/early fall and 26	  

winter were observed between 2011 and 2015. There were significant monthly fluctuations (-27	  

19% to +31% from annual mean and a maximum month-to-month change of 47%) in the 28	  

inferred methane emissions in the basin. Based on previous studies on the seasonal variability of 29	  
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CH4 emissions from CH4 sources, we concluded that landfills, dairies and wastewater treatment 1	  

facilities are likely sources of the peak CH4 emissions in late summer/early fall. Fugitive 2	  

emissions from natural gas storage facilities and associated infrastructure may contribute to both 3	  

the late summer and late fall peaks.  4	  

No significant trend in CH4 emissions  (-5 ± 4 Gg CH4 per year with a 25% confidence level due 5	  

to the uncertainty in CO2 emissions) could be discerned over the 2011 to 2015 time period. The 6	  

population-scaled bottom-up CH4 emissions from 2011 to 2013 were 2-31% lower than our top-7	  

down estimates. These results are consistent with previous studies (Wunch et al., 2009; Hsu et 8	  

al., 2010; Wennberg et al., 2012; Peischl et al., 2013; Wong et al., 2015). A combination of 9	  

several measurement and modeling strategies are necessary to further disentangle the monthly 10	  

variability of methane sources in the Los Angeles basin.  11	  
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    1	  

 2	  
 3	  

Figure 1. Top: CLARS facility located at 1.67 km above sea level on Mount Wilson, looking 4	  

over the Los Angeles basin. Optical paths from direct sun beam and basin surface reflection are 5	  

shown as yellow lines. Bottom: Location of 29 reflection points on Mount Wilson (white square) 6	  

and in the basin (yellow triangles).  7	  

  8	  
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 1	  
 2	  

Figure 2. Time series of the Los Angeles basin weighted-average monthly regression slopes of 3	  

XCH4(XS)—XCO2(XS) (in unit of ppb ppm-1) and their uncertainties observed by the CLARS-FTS 4	  

in the basin from September 2011 to May 2015. Uncertainties are ±1σ of the regression slopes.  5	  
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 1	  
 2	  

Figure 3. Monthly patterns of the Los Angeles basin weighted-average regression slopes of 3	  

XCH4(XS)—XCO2(XS) (in unit of ppb ppm-1) and their uncertainties observed by the CLARS-FTS 4	  

in the basin. Monthly trends are color coded as follows: 2011 in blue, 2012 in cyan, 2013 in 5	  

green, 2014 in orange and 2015 in red. Monthly average ratio and its standard deviation over the 6	  

entire observational period are shown in black. 7	  
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 1	  
 2	  

Figure 4. Interannual variability of R (in units of ppb CH4 (ppm CO2)-1) in fall (orange), winter 3	  

(blue), spring (green) and summer (red) from 2011 to 2015. The annual average ratio is shown in 4	  

black. Also shown are the ±1σ uncertainties. Note that data for 2011 and 2015 are derived from 5	  

partial annual observations (that is, September to December for 2011 and January to August for 6	  

2015. The CH4:CO2 ratio based on the population-scaled bottom-up emission inventory from the 7	  

California Resources Board is shown in light blue (California Air Resources Board, 2013).  8	  
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 1	  
 2	  

Figure 5. Time series of the different CO2 monthly emissions (in units of Tg per month) from the 3	  

South Coast Air Basin. Emissions are color coded as follows: Population-scaled CARB in light 4	  

blue, Hestia in solid black, ODIAC in solid red and FFDAS in solid green. Extrapolated 5	  

emissions using annual fuel consumption data are shown in faded solid lines.  6	  
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 1	  
 2	  

Figure 6. Time series of CLARS-FTS inferred monthly CH4 emissions (in units of Gg per 3	  

month) and their 1σ uncertainties from the Los Angeles basin from September 2011 to August 4	  

2015. Overall uncertainties are propagated from the uncertainties of CLARS-FTS XCH4(XS)—5	  

XCO2(XS)
 regression slopes and CO2 emissions. 6	  
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 1	  
 2	  

Figure 7. Monthly patterns of derived CH4 emissions (in units of Gg per month). Error bars 3	  

represent the ±1σ uncertainties. Derived CH4 emissions are color coded as follows: 2011 in blue, 4	  

2012 in cyan, 2013 in green, 2014 in orange and 2015 in red. Average monthly emissions and 5	  

their standard deviations over the entire observational period are shown in black.  6	  
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 1	  
 2	  

Figure 8. CLARS-FTS inferred annual CH4 emission estimates (in units of Gg per month), based 3	  

on Hestia CO2 emissions. Red line indicates the regression slope and the shaded area is the 25% 4	  

confidence interval.   5	  
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 1	  
Figure 9. Comparison of annual CH4 emission estimates (in unit of Gg per month) reported in the 2	  

past ten years. The Mount Wilson estimate reported by Wennberg et al. (2012) was derived for 3	  

the South Coast Air Basin using the emission estimates based on Hsu et al., 2012.    4	  
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